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I. INTRODUCTION

Problems involving solidification or melting of materials are of con-
siderable importance in many technical fields such as casting processes,
food freezing, crystal growing, cryosurgery, thermal energy storage, and
satellite temperature control applications, to mention a few. Heat conduction
problems involving freezing or melting are complicated due to the coupling
of the temperature field with the rate of propagation of the phase boundary
between the solid and liquid phases. Only a few exact analytical solutions
have been found, e.g., Neumann's solution to the one-dimensional Cartesian
case reported in Carslaw and Jaeger.1 Most available solutions are obtained
by analytical approximations and numerical methods. The one-dimensional
problem for simple shapes such as plates, cylinders, and spheres has been
treated by various analytical techniques, e.g., the heat balance integral
method by Goodman,2 the variational method by Biot,3 the method of moving
heat sources by Rosenthal4 and the method of polynomial approximation by
Megerlin5 and Li.n.6 London and Seba.n7 obtained exact closed-form solutions
by assuming that the heat capacity of the solidified or melted substance is

negligible relative to the latent heat of fusion. This assumption greatly

1Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed.,
Oxford University Press, London and New York, 1959,

2Goodman, T.R., "The Heat-Balance Integral and Its Application to Problems
Involving a Change of Phase, " Transactions of ASME, Vol, 80, 1958,
pp. 335-342.

3Biot, M. A., and Daughaday, H., "Variational Analysis of Ablation, "
Journal of Aerospace Sciences, Vol. 29, No. 2, 1962, pp. 227-228.

4Rosenthal, D., "The Theory of Moving Sources of Heat and Its Application
to Metal Treatments, " Transactions of ASME, Vol. 68, 1946, pp. 849-866.

5Megerlin, F., "Geometrisch eindimensionale Warmeleitung beim Schmelzen
und Erstarren, " Forsch. Ing.-Wes., Vol, 34, 1968, pp. 40-46,

Lin, S., "An Analytical Method for Solving Geometric One-dimensional
Freezing or Melting Problems, " ASME Paper No, 73-WA/HT-33,

7
London, A, L., and Seban, R.A,, "Rate of Ice Formation, " Transactions of

the ASME, Vol, 6, 1943, pp. 771-778,
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simplifies the mathematics but limits the applicability of the solution to a

certain class of problems as discussed below. Numerical solutions to the
one -dimensional phase-change problems for simple shapes such as slabs,
cylinders, and spheres are too numerous to mention here. References 8 and

9 are good starting points,
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i
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Multidimensional phase-change problems are very complex to solve
analytically even for highly idealized situations such as those treated in
Refs. 10 and 11; the common approach is to use numerical methods.12 How-
ever, several seemingly multidimensional problems can be closely approxi-
: mated by one-dimensional techniques if a proper coordinate system is used so

that the physical boundaries of the system can be made to coincide with the
3,14

coordinate surfaces.l The purpose of this report is to develop a unified
approach in the use of orthogonal curvilinear coordinates to conduct prob-

E lems involving phase-change and to present examples in several of the most
common coordinate systems. The closed-form expressions obtained give

the solidified (or melted) fraction, interface position, boundary temperatures,
and heat fluxes as a function of time for elliptic cylinder and spheroidal phase-

change containers of various eccentricities.

8Ehrlich, L.W., "A Numerical Method of Solving a Heat Flow Problem with
Moving Boundary, " Journal of ACM, Vol. 5, 1958, pp. 161-176,

Murray, W.D., and Landis, F., "Numerical and Machine Solutions of
Transient Heat-Conduction Problems Involving Melting or Freezing, "
Transaction of ASME, Vol, 81, 1959, pp. 106-112,

9

Poots, G., "An Approximate Treatment of Heat Conduction Problem In-
volving a Two-Dimensional Solidification Front, " International Journal of
Heat and Mass Transfer, Vol, 5, 1962, pp. 339-348,

11Rathjen, K.A,, and Jiji, L.M., "Heat Conduction with Melting or Freezing
in a Corner, " Journal of Heat Transfer, Trans. ASME, Series C, Vol. 93,
1971, pp. 101-1009, |

12Shamsundar, N., and Sparrow, E, M., "Analysis of Multidimensional 1
Conduction Phase Change Via the Enthalpy Model, " Journal of Heat Transfer,
Trans. ASME, Series C, Vol, 97, 1975, pp. 333-340,

3 :
Yovanovich, M.M,, Advanced Heat Conduction, Hemisphere Publishing
Corporation, Washington, D.C,, 1978,

14
Moon, P., and Spencer, D.E,, Field Theory for Engineers, D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1961,




II, ANALYSIS

A, CARTESIAN COORDINATES

Consider first the relatively straightforward case of idealized freezing
between two infinite parallel plates as shown in Fig. la. Attime t= 0 the
content between parallel plates is assumed to be a pure liquid at its freezing
or melting temperature. As the outer walls are cooled by contact with

another medium at T, the solidification boundary moves inward toward

o’
smaller values of x. The effects of supercooling, density changes due to
change of phase, convection between the two phases, and temperature drop
through the container wall are neglected. Let Q be the heat rate removed
from the surface at X through a heat transfer coefficient ho' If the sensible
thermal energy stored in the solidified layer is small compared to the latent-
heat-of-freezing, heat flowing from the solid-liquid interface at x is also

equal to Q and is given by

o~ g
s 1 b g
ha tTka
O O

This heat flow provides extraction of the latent heat of fusion necessary for
freezing at the surface x

d (x - x)Ap 2)

Q=Ld—t o

where (d/dt)(xo -x)Ap is the mass rate of solidification at the growing surface

kg/s, and L is the latent heat of fusion cal/gm. When Eqs. (1) and (2) are

equated to eliminate Q

Tfr-To 1 i
—pL_dt=- F;*‘T"‘) dx (3)




‘ et AT . - - -_,.., S ——— o
)
;
k
r o :
.‘ Ao fe— Xo! L‘_xo 1
1 ho :ﬁ..
| B N
Tw ' - Tw
T S N—=1,
ho 1
1a 1b
{
b |
AO - —— l ll
| ’..
of i 1 I
Twl y |
el I
1c 1d
Fig. 1. Idealized Temperature Distributions during
F ~se Change




where A =A0 for Cartesian coordinates. Equation (3) can be readily non-

dimensionalized by employing the dimensionless distance coordinate

POs
b3

X = x/x0 £ 1.0 and the Biot number Bi = hoxo/k as follows:

k(T - T ) %k £
—f’—2°— S % e e . (4)
pLx.

For the case of inward solidification, Eq. (4) can be integrated from x* =1

att=0 to x* =x at t; the result is

k(T, - T )t e >::2
——fLZ—OESteFo=<%+1><1-x‘>-%<l-x > (5)
pLx’

where the dimensionless time parameter is the product of the Stefan number
Ste = C(Tfr = To)/L times the Fourier number Fo = (k/pCLZ)t. The Stefan
number is the ratio of the specific heat effect to latent heat. For heat storage
applications it is sometimes more convenient to express Eq. (5) in terms of
the frozen fraction F, which is defined by F = (x_ - x)/x_ =1 - €

2

N A
SteFo = Bi + > (6)

The wall temperature history can be readily obtained by equating the heat
flow through the outer surface hvo(TW - To) to Eq. (1) and rearranging

T Sea 1 o e 1 -
T leBilew g TR

‘/1 + ZBiZSteFo




The plotted results from Eqs. (6) and (7) will be presented later when

freezing in elliptic cylinders is compared with oblate spheroids of high eccen-
tricity. Note that the boundary condition temperature To in Eq. (2) could

be a function of time without complicating the integration significantly.
Closed-form solutions are still obtainable, as long as the assumed function

can be integrated.

Equations (6) and (7) are also applicable for the case of melting, as
shown in Fig. lc, the only difference being that in this case F is the melted

fraction and To > Tw S>HE The case of freezing in an outward direction,

fr°
Fig. lb, can also be similarly derived by equating the heat extraction rate

to the mass rate of freezing

T I s
(o)

Using the same nondimensional terms as before and integrating from x =1

att=0to x =x att results in

g 1 e 1 >:<2 1
SteFo—%—i-l x -1 TEEx - (9)

where x =x/x0 2 1.0, This equation is valid for outward freezing or melting

(see Figs. lb and ld).

B. GENERALIZED COORDINATES

Before proceeding with formulation of the problem in general curvilinear
coordinates, 2 general expression for the thermal resistance, comparable to
the x/kA for Cartesian coordinates, is required. Special coordinate systems
are used because it is sometimes possible to make the isothermal surfaces
of a given heat conduction problem coincident with coordinate surfaces, thus

making the temperature field one-dimensional in that coordinate system, e.g.,

the field between two concentric cylinders in circular cylinder coordinates.




O bl e Ll enmintl L)

Consider the orthogonal curvilinear coordinates shown in Fig. 2. The

general line element ds is the diagonal of the infinitesimal parallelepiped

with faces that coincide with the planes u;, w,, oru, = const and is given by
2R 2 2 2
ds = gldu1 + gzduz iE g3du3 (10)

which can be considered as the definition of the metric coefficients g8, 83
that may be functions of U, u,, and uj. When the Cartesian coordinates ‘
X,y,z can be expressed in terms of the new coordinates, U, Uy, u, by the g
eqQuations x = x(ul, u,, u3), y = y(ul,uz, u3), and z = z(ul,uz, u3), the metric

coefficients can be readily generated by means of the following formula:l3' i

2 2 2 |
g = (3—\1"?) +(%§i) +(§le;) i=1,2,3 (11)

The infinitesimal volume is given by

dV = \/g dulduzdu3 (12)

where /g = ,/g1g2g3 . The elemental surface area orthogonal to the

ul-direction is

dAl = 8,83 duzdu3 (13)

2" and ug -directions.

The heat flow/unit time through this surface into the volume element is

Similar expressions can be written for the areas in the u

. = ~pin S o . kM 2L w0 da

(14)
1 1 cls1 g du.1 213
The net rate of heat conduction out of the volume element is
3
' A [ NE 9T
r dul <k g dul) dulduzdu3 (15)

-11- !
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Dividing by volume element dV =4+/g dulcluzdu3 and equating to zero results in

Laplace's equation in the u, direction

T K VE :T o (16)
Ve du) gl %
Integrating once, the result is
K VB 4T _ ¢ 17
g, du1 1

At this point the thermal conductivity is assumed to be constant and

the boundary conditions are taken as

u, = b (18)

Integrating Eq. (17) between these limits and solving for Cl results in
k(TZ -T)

1

% “

Substituting in Eq. (17) and solving for the temperature gradient results in

g
NE

dT

du1

(20)

<ﬂ,

T
j’
a

The heat flow/unit time along the u, -direction can be obtained by substituting

in Eq. (14) and integrating between appropriate limits along u, and u,

Q, = k(T - ff b 21)
f Y
a

P51 W




T O ST

The thermal resistance R is defined as the temperature drop over the

total heat flow rate; thus

du,du
R‘l = k ff _b_ZL (22)
g

g (o s |
Yovanovich "7’ derived this equation for the more general case of thermal
conductivity as a linear function of temperature and showed that Eq. (22) is
valid if k represents the arithmetic average conductivity., He also specialized

Eq. (22) for the most frequently used coordinate .tsysl:ems.15

Consider a phase-change material (PCM) confined between two iso-
thermal surfaces of a general orthogonal coordinate system at different
temperature levels with phase change taking place inwardly from a larger
outer surface to a smaller inner surface. A heat balance similar to Eq. (3)

for the Cartesian coordinate case can be written as follows:

T C LGV, = W) 23)

o o
— du

AT
du.duk
BA. T~ ff et
uj u gi
NE 1

a

where all assumptions made in deriving Eq. (3) apply for this equation as well,
When phase change proceeds in an outward direction, from the smaller area
toward a larger area, the right-hand side of the equation is changed to pLdV/dt,
Equation (23) will be specialized and solved for elliptic cylinder, oblate

spheroidal, prolate spheroidal, and bicylindrical coordinates.

Yovanovich, M.M., "A General Expression for Predicting Conduction
Shape Factors, " AIAA Paper No. 73-121,

-14-




C. ELLIPTIC CYLINDER COORDINATES (1, 6, z)

Phase change conduction problems in or around elliptic cylinders can be
enormously simplified by using elliptic cylinder coordinates as shown in

Fig. 2. The coordinates are obtained by taking an orthogonal family of

confocal ellipses and hyperbolas in a plane and translating them in the
z-direction. The coordinate surfaces of interest here are elliptic cylinders

(N = const). The relations between the elliptic and Cartesian coordinates are

a coshp cos¥

X =
y = a sinhn sinV¥
z = 2z (24)

The metric coefficients can be easily derived by the use of Eq. (11)

g,7 = gw = azcoshzr] - coszd’, g = 1 (25) ;
From Eq. (24) it can be seen that b = a coshn, ¢ = a sinhpand n = tanh—lc/b.
The thermal resistance between two elliptic cylinders is readily obtained by
Eq. (22) or taken directly from Refs. 13 or 15.

o 50
R = TEFZE- (26)

The heat balance equation is

1 |
£
E §

b T
fr o - d & dav
: +7)°"7 -pLdt(Vo-V)--PLdt (27)
hvo 2nfk
The area Ao can be computed from Eq. (13) as follows:
! 2n L n/2
A= f Ve, Wz = 4 ff a Veosh?y - cosZy d¥dz (28)
o 0 o o

«15«




Letting ¥ = 90 - @, it can be shown that

A = 4af coshn_ E(n) (29)

(e}

where E(no) is the complete elliptic integral of the first kind tabulated in most
mathematical tables and shown in Fig. 3 for ease of reference. The expres-

sion for the volume V can be calculated from Eq. (12) by triple integration,

L m2 g
V = 43 f f f (cosh®p - cos’y) dnd¥idz = Ta%L sinhzn  (30)
o o o
Differentiating with respect to time and substituting the heat balance equation
becomes
k(T, -T) n,-n
fr o k o
dt = - + wl cosh2ndy (31)
—
pLa [4alhocoshnoE(7)0) 2wl ]

For the case of inward solidification, the limits of integration are from
n-= 170 att=0top=n att=t

2
b
Rl Ik | 8 (Z) s (E)z-1 .
chZ 4Bi coshnoE(no) z ¢
Mo 5§ B
b n
. f cosh2ndy - [(E’) 1]_/ 7 cosh2ndn (32)
n

n

where the semiminor axis ¢ has been used to define the Biot number Bi = h c/k
The term on the left-hand side of the equation is the product of the Stefan and

Fourier numbers. Performing the integrations shown finally results in

T

e L S




A19a1300dsay ‘sjinsay [eproxaydg ajejord pue
Teproxaydg a3e1q0 .u%cciu ondId ay3 jo uorjendwo)
2y} ajej[1oe g 03 E:-H pue ()°1 ‘(W3 suonoung yerdadg ‘¢ °*8ig

w
oy (1 0¢ oL 0
—|-1-d|--ﬁ- ﬁ-aJ Ty ¥V -8 -— TV v 1 v r3g -J-— T 1T T vy v Q

-17-

1o ()3 'SNOILONNA

|
d
w,

w3 st

VP d o T m———

e




YT

k(Tfr ¥ To)t il (2)2 b

SteFo = = -
chZ 8Bi coshnoE(no)

(sinh2y_ - sinh21)
1 (2)2 1| + @7 sinh2n - 27 sinh2n - cosh2

e 8 c - n031n 77 Lo n n n s ”o

+ cosh2n) (33)

Since b=a coshp and c =a sinh?, it can be easily shown that
Ak b/c +1
n = Eln .57(:_-_1 (34)
2
. - g . b
a = b -c =c¢ (C)—l (35)

The wall temperature history can be obtained by equating the heat flow through
the surface hvo(Tw - To) to the left-hand side of Eq. (27) and rearranging;

the result is

-1
T -T : 2
w O 2Bi b
T_h.T = |1 4 - (T]o - n)COShT)OE(ﬂo) (E) - 1] (36)

This ratio can also be interpreted as the normalized heat flow rate that can be
extracted from the PCM during freezing or the heat flow rate that must be
introduced to achieve a given percent of fusion. Figure 4 shows the variation
of the dimensionless wall temperature and frozen fraction F as functions of
the dimensionless time parameter SteFo. The frozen fraction is related to

the n-coordinate by

v . ¥
- O 3 sinh2?
b  Fee Relis sinh2n_ 37)

18
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As c/b approaches unity, the results approach the limiting case of a circular
cylinder derived by London and Seban.7 In terms of the symbols used in

this report, the circular cylinder results are

:,':2 2
SteFo = r_z__ [nr>': + (_21171 +%) (l e ) (38)

ke :':2
where r = 1-/ro £1.0 and the frozen fraction F =1 - r . The dimensionless

wall temperature is given by
o e ¢
W o

Tfr i To

= - sk (39)
1 - Bifnr

The results for a slab, Eqs. (6) and (7), are also shown. The case for
c/b = 0,01, not shown, is closely equal to the ¢c/b = 0,1 case; thus, the
slab results do not provide a good approximation for elliptic cylinders of
high eccentricities. Note that for applications such as energy storage or
close temperature control, where a low temperature difference is required
throughout the PCM, elliptic cylinder containers provide a better choice than
circular cylinders as seen by comparing the ¢/b = 0,9 and cylinder results
in Fig. 4. The effect of Biot number on elliptic cylinders of moderate
eccentricities is summarized in Fig. 5, For applications where low tempera-
ture differences are required, Biot number should be kept as low as possible
within the constraint of being able to achieve complete phase change in the
allocated time span. The effect of eccentricity c/b on the time required for
complete solidification and the corresponding dimensionless wall tempera-
ture is shown in Figs. 6 and 7. Low Biot numbers and c/b ratios result in
small temperature differences during the phase-change process; however, the
corresponding times for complete phase change are relatively larger. When
the Biot number is sufficiently high, a relatively large temperature difference

develops across the PCM for all c/b values.
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Fig. 6. Dimensionless Time for Complete Solidification as a
Function of ¢/b with Biot Number as a Parameter
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Fig. 7. Dimensionless Wall Temperature as a Function of
¢/b with Biot Number as a Parameter
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For phase-change problems in an outward direction where n > 770, it
can be shown that the dimensionless time to reach a given position n is
obtained by placing a negative sign on the first term only of Eq. (33). The

wall temperature of the inner boundary TW can be calculated from Eq. (36) if

(770 -n) is changed to (n - T]o). The resulting expression can be used to
estimate the rate at which a phase-change front would move into the half-
space above the x-axis from a strip of length 2a located on the x-axis, which

is assumed to be insulated everywhere else.

D. OBLATE SPHEROIDA L. COORDINATES (7, 0,¥)

The oblate spheroidal coordinate system is generated by taking an

] orthogonal family of confocal ellipses and hyperbolas and rotating it about
the minor axis of the ellipses as shown in Fig. 2. The 7 = const solids are
called oblate spheroids. When 77= 0, the spheroid degenerates into a flat
disk of radius a. The relations between oblate spheroidal coordinates and

. s 13
Cartesian coordinates are

x = a coshp sin@ cos¥Y
y = a coshn sinf sin¥

z = a sinh7 cos@ (40) ,

The metric coefficients can be easily derived by using Eq, (11)

go = az(coshzn - sinZO)

azcoshzn sin™0 (41)

€n

' g
| W

From Eq. (40) the semimajor axis is b = a coshn and the semiminor axis is

¢ = a sinhn from which n = tanh_lc/b.

«2h -




The thermal resistance between two oblate spheroids can be obtained by

performing the integrations indicated in Eq. (22) or by using the results of
Ref. 15 directly

tan-l(sinhno) = tan'l(sinhr])
Bo= imka )

where 77 < 770 for the inward solidification case. The heat balance equation

can now be written as before

o [ e R
e o PLZ—Y (43)
tan (sinhr]o) - tan " (sinhpn)
h A g 47mka
o o

The area Ao can be computed from Eq., (13)

w2
2 2 : 1 W2
Ao 4ma”cosh n, f sin \/1 o Sm e b 046
o

cosh n,

4ma®cosh? ni m,) (44)

where the definite integral Io(r)) is plotted in Fig. 3. Volume V can be found
by integrating Eq. (12)

3
v = 2 (sinhp + sinhy) (45)

Differentiating with respect to time and substituting in Eq. (43) above, to-

gether with Eq. (44), gives

-25-




b n ’

BT, - F It =% -3 2 .
= o . Bl—l) (CZ) ¥ [(g) : 1] tan” ! (sinhn )} - f (cosh’n
pLc cosh r)olo(no) n :
2 "o
-%coshn)dr] - [(2—) - l] . f tan—l(sinhn)
n
- [cosh3n 3} %coshr)]dn (46)

The integrations shown on the right-hand side of the equation can be carried

out in closed form with the following final result:

e Ty (%)2 2t (b)z o
SteFo = (—) COShzn Ll + [ =) l} tan (sxnhﬂo) . Iy
oo o

; [(%)2 ; 1] 1 (47)

where

= %(sinhh‘]o + sinhno - sinh3n - sinhp)

e
[l

, = %[(sinh3ﬂo + sinhno)tan_l(sinhr)o)
- (sinh37n + sinhnf) . tan-l(sinhn)]

- %(COShZﬂO - cosh2n)

As in the elliptic cylinder case, the Biot number is defined in terms of the
semiminor axis ¢ which is related to a by a = Vbz - cz.




The wall temperature history can be obtained by equating the heat
flow through the outer surface hvo(Tw - To) to the left-hand side of
Eq. (43) and rearranging; the result is

T - T
w

. S,
F .~k
o

o . 2 -1 .
s =!1 + Bicosh r)olo(no)[tan (smhno)

- L
2 tan'l(sinhn)] -\ < ) ” 1} (48)

Figure 8 shows Eqs. (47) and (48) plotted for Bi = 1.0 for oblate spheroids of
c/b ratios 0of 0.9, 0.5, and 0.1, The frozen fraction F is related to the

olo

n-coordinate by

sinhn cosh2 n

: P e S = 1.0 - (49)

o sinhnocosh2 n,

As c/b approaches unity, the results approach the limiting case of a sphere

derived in Ref, 7. In terms of the symbols used herein, the sphere results

1(1 L «2
SteFo=§-<§-i--l l-r >+? l-r (50)

& ~‘<3
where r = r/r0 £1,0 and the frozen fraction F =1 -r ., The dimension-

are

less wall temperature is given by

T <y 1
PR T 1+Bi(—*- ) (51)

fr r

]
—

The case for c/b = 0,01, not shown, is almost equal to the ¢/b = 0,1 case;
thus the slab results do not provide a good approximation for disclike oblate

spheroids of high eccentricities, For applications where a low temperature

TR
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difference is required throughout the PCM, oblate spheroidal coordinates
provide a better choice than spheres. The effect of eccentricity c¢/b on the
time required for complete solidification () = 0) and the corresponding
dimensionless wall temperature are qualitatively similar to the calculated

results for the elliptic cylinder case shown in Figs. 6 and 7.

For phase-change problems in an outward direction where 7 > N, it
can be shown that the dimensionless time to reach a given position pis
obtained by placing a negative sign before the first term, inside the bracket,
of Eq. (47). The wall temperature of the inner boundary TW can be calcu-
lated from Eq. (48) by placing a negative sign in front of the second term
inside the brackets. The resulting expression can be used to estimate the
rate at which a phase-change point would move into the half-space above the
x-axis from a circular disc of radius a, located on the x-axis, which is

assumed to be insulated everywhere else,

E, PROLATE SPHEROIDAL COORDINATES (1, 6,¥)

The prolate spheroidal coordinate system is generated by rotating an

orthogonal family of confocal ellipses and hyperbolas about the major axis

of the ellipses as shown in Fig. 2. The prolate spheroids, § = constant solids,

vary in shape from near-spherical to thin rods of finite length. The rela-

tions between prolate spheroidal coordinates and Cartesian coordinates are13

X = a sinhn sin@ cos¥
y = a sinhp sin@ sin¥
z = a coshn cos@ (52)

The metric coefficients can be easily derived by using Eq. (11)

gn = ge = az(sinzn + sin20)

8, 2% sin’y sin%e (53)

~29.
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The thermal resistance between two prolate spheroids can be obtained by

using Eq. (22) or by using the result of Ref. 15 directly.

In[tanh(n_/2) - In[tanh(n/2)]

R = dMak

(54)

where n< n, for the inward solidification case. The following derivation
proceeds in a similar manner to the oblate spheroid case, namely, writing
the heat balance equation and substituting the expressions for A0 and V
which are functions of  only. The dimensionless form of the heat balance

equation is

¢
: Kilgy =~ Fght =

LIS (19 0 Y S

2 G2
pLc sinh noIp(T)o)

(1)
[

where I1 and I2 are two integrals that can be integrated in closed form as

shown below:

Mo
f (smh n+x smhr)) n = —ll—z(cosh377° - cosh3n - cosh)’)o + coshnp)
n (56)
Mo
I2 = f ln[tanh(n/Z)] sinh37‘) +%sinhn)dn =
n
= % ln[t:«.mh(ﬂ/Z)](cos37')o - coshno)
- =5 In[tanh(n/2)](cosh3n - coshn)
12
- —]:2- (costh]o - cosh2n) (57)
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The term Ip(ﬂo) is a definite integral required to define the surface area of a

prolate spheroid. Its reciprocal is plotted in Fig. 3 as a function of 77. The
Biot number is defined in terms of the semiminor axis ¢ which is related to a

by a = Vbz -cZ.

Ti=2 wall temperature can be obtained in a similar manner to the oblate

spheroii case; the result is

b L A o / tanh(no/Z) >
T_fl_—_'-T; 1 + Bi sinh nI (”) W (58)

Figure 9 shows Eqs. (55) and (58) plotted for prolate spheroids of c/b ratios

0of 0.9, 0.5, and 0.1, The frozen fraction F is related to the n-cocrdinate by
F = LA =0 sinhzncoshn

> (59)
o sinh n,cos hno

Figure 9 illustrates that as c/b approaches unity, the frozen fraction and
dimensionless wall temperature approach the limiting case of a sphere. For
small values of c¢/b the limiting results are close to the ¢/b = 0.1 case and
cannot be accurutely estimated by the infinite cylinder results. For cases
where the temperature difference between the wall and the freezing point
must be kept at a low value, such as in thermal energy storage and close
temperature control applications, the phase-change container shapes shown |
in Fig. 9 are not desirable because they all result in the maximum possible H
temperature difference at the end of the phase-change process. Elliptic
cylinders, oblate spheroids, and other slablike geometries result a lower

temperature differences for all values of the Biot number.

F. BICY LINDRICA L. COORDINATES (n,¢, z) u

The bicylindrical coordinate system is generated by translating the two
families of orthogonal circles in the xy-plane, shown in Fig. 10, parallel to

the z-axis pointing into the paper. The circles ) = const are drawn about two

poles x =#a, while the orthogonal family ¥ = const has its centers on
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the y-axis. The relation between bipolar coordinates and Cartesian

coordinates is13

a sinhf/coshn - cos¥)

X =
y = a sin¥/coshy) - cos¥)
Z = =z (60)

The metric coefficients can be easily derived by the use of Eq. (11)

al

80n T B —
n ¥ (coshn - coslp)z

, g, =1 (61)

Using the thermal resistance between two circles of the ) = const family

(m, - 1)/ 2k fm and proceeding as before results in

' 2
k(Tfr - To)t smhnotanhr}o f)otanh ﬂo

2 2
= >BI + > * |csch™@ - csch n,

2
pro

2
tanh™n 2 2
- —2——9- Ncsch™n - nocsch '70 + ctnhn - ctnhno

(62)

where w is the location of the center of the N-circle on the x-axis and r is
the radius of the circle, It can thus be shown that o acoth)‘)o and

By ™ al/ |sinhno'- Equation (62) can be used to estimate the rate of phase
change between eccentric isothermal cylinders that have a large length-to-
diameter ratio, As 7 approaches zero, Eq. (62) estimates the rate of phase
change around a long pipe of radius r which is buried at a depth of W
beneath an isothermal level surface which is maintained at the phase change

temperature,

-34.
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G. ESTIMATION OF ERRORS

An estimate of the error caused by neglecting the heat capacity of the
solidified (or melted) portion cannot be readily determined for the case of
the elliptic cylinder and spheroidal coordinates. However, since the solu-
tions obtained are bracketed by, and similar to, the more common cases of
the one-dimensional slab and the cylinder, it is reasonable to assume that an
analysis of the error involved in these cases will indicate the error involved
in the more complex geometrics treated herein. Croodmam,2 using the heat-
balance integral, obtained a solution for the slab problem shown in Figs. 1b

and 1d with h°~ oo and X, = 0. His result for the location of the phase

change front is

2= Wil tee ca o Jom (63)

which approximates the exact solution given in Carslaw and Jaeger1 within
2.0% up to Ste = 0.5. The comparable solution for the case of negligible
heat capacity can be obtained by letting ho approach infinity, taking x, = 0 in

Eq. (8), and carrying out the simple integration. The result is
x = / Ste V2ot (64)

The percent error in calculating the time required to reach a given location
of the phase-change front can be obtained by comparing Eqs. (63) and (64)
(see Fig. 11), Ignoring the heat capacity results in change of phase times
that are always shorter, as expected. As long as the Stefan number is below
0.2, Eq. (64) underpredicts the phase-change time by less than 10%. For

Stefan numbers below 0, 05 the maximum error is below 3%.

Further confirmation of the validity of neglecting the sensible heat
effects for low Stefan numbers was carried out by comparing Megerlin's5

result for a cylinder, given below, with Eqs. (38) and (39).




1000 —
B Bi=100
-
10.0. -
£ F
[ o
o -
[+ 4
[+
w =
10
— — SLAB Bi =00
CYLINDER
0.1
0.01

Fig. 11. Percent Error in SteFo due to Neglecting the Sensible
Heat Effect as a Function of Stefan Number with
Biot Number as a Parameter
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l e
2 r p g X g * g % *
SteFoC;‘0 = /: >BI [V(l = Bxlnr -2 SteBifnr (2 - Bx[nr ) + (1 - Bxlnr )] dr

r

(65)

Ta =% LS % ke % 2 * 2
e e [r"}lnr o0 ) (o) ] (66)
fr o

where

e

7 ___-2SteBi

3 x & TF % iy * >
r [\/(1 - Bilnr') - 2SteBifnr (2 - Bifnr ) + (1 - Bilnr ]

These equations, although approximate, have been shown to yield results of
high accuracy by comparison with finite difference solutions.16 The percent
error as a function of Stefan number has been calculated and is shown in
Fig. 11 with Biot number as a parameter. The percent error is defined by
100(SteFoC#0 = SteFoC=o)/SteFoC’0.
the error in neglecting the sensible heat effects. The integration of Eq. (65)

Lower Biot numbers tend to decrease

was carried out numerically using Simpson's method with interval-halving
and a convergence criterion of 0,5 x 10"5 between iterations., The error in
comparing the wall temperature as predicted by Eqs. (66) and (39) is about
the same as above for Stefan numbers up to 1.0. For larger Stefan numbers

the error is less than the error in SteFo.

H, FLUX BOUNDARY CONDITION

When the heat transfer rate is specified at the container wall the heat

balance Eq. (23) simplifies considerably to

. d
Q= PL (V- V) (67)

1TShamsundar, N., and Sparrow, E.M,, "Storage of Thermal Energy by

Solid- Liquid Phase-Change--Temn perature Drop and Heat Flux, " Journal of
Heat Transfer, Trans, ASME, Series C, Vol. 96, pp. 541-543,
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for the inward phase change problem subject to the same assumptions stated
earlier.” The wall temperature c¢an also be readily calculated from

Q= (’I‘fr - Tw)/R by substituting avo for Q and using the appropriate
thermal resistance for the coordinate system used. The results are sum-
marized in Table 1. The symbol ¢ represents the half thickness X for the
case of a slab, the outer radius r, for the cylinder and sphere, and the
semiminor axis for the remaining coordinate systems. The symbol F is
related to 77 by the same equations as for the convection boundary condition
cases described earlier, Figure 12 shows the calculated results for
selected geometric shapes. The frozen fraction is a linear function of the
dimensionless time parameter used for all cases; the dimensionless tempera-
ture difference, however, is nonlinear and tends to high values for some
geometries at the end of the phase change period. For applications where
low temperature differences are required, elliptic cylinders, oblate
spheroids, and slabs are more appropriate phase change container shapes
than spheres, cylinders and prolate spheroids. The reason is that the ther-
mal resistance between the container wall and its center tends to infinity for

certain geometries, thus resulting in high temperature differences.

Note that the equations presented in Table 1 are derived from thermal
resistances based on isothermal boundary conditions. For uniform flux
boundary conditions the problem becomes generally two-dimensional; how-
ever, departures from one-dimensionality are expected to be small because
of the symmetry of the problems considered herein. The symbol q should be
interpreted as the area-averaged heat transfer rate so that the boundary
condition temperature is uniform. This is believed to be a valid approach
since in most real situations the actual boundary condition is not known
exactly and usually lies somewhere between the constant temperature and the

constant flux condition. For the case of bipolar coordinates where highly

asymmetric geometries are involved, large departures from one -dimensionality

are present for certain uniform flux cases as reported in Ref, 17.

1_'.Tlrxiyagarajan, R., and Yovanovich, M,M., "Thermal Resistance of a
Buried Cylinder with Constant Flux Boundary Condition, " Journal of
Heat Transfer, Trans. ASME, Series C, Vol, 96, pp. 249-250,
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I. APPROXIMATION OF TWO-DIMENSIONAL PROBLEMS

Sometimes it is possible to approximate the thermal behavior of two-
and three-dimensional phase change problems by a one-dimensional analysis
using an appropriate coordinate system. Table 2 lists a comparison of the
wall temperature ratio and dimensionless time parameter for different frozen
fractions as calculated by Eqs. (38) and (39) with the numerical results
obtained in Ref. 12 where an ad hoc computer program was used to predict
the rates of freezing and temperature distributions of a PCM contained in a
convectively cooled square container. The maximum error is 10% for this
case where Biot = 1,0, The maximum error calculated for the Biot = 10,0
and Biot = 0.1 cases are 17 and 2.6%, respectively. Another example is the
two-dimensional problem of a long cylinder of finite length that can be

approximated by using prolate spheroidal coordinates where c/b approaches

zZero.

il =

:

|
4
_




Table 2. Comparison of Eqs. (38) and (39) with the
Numerical Results of Ref. 12 for Biot=1.0

(Tw- To)/(Tfr -To) SteFo

Frozen

Fraction Eq. (39) Ref. 12 | Eq. (38) Ref, 12
0,097 0,9515 0.95 0.04972 0.05
0.189 0.9052 0. 905 0.0993 0.10
0.274 0.8620 0. 865 0, 1474 0.15
0.428 0,.7817 0.815 0.2410 0.25
0,564 0.7067 0. 75 0.3325 0.35
0.738 0.5989 0.64 0.4658 0.50 :
0,878 0,4874 0.51 0.5940 0.65
0. 983 0.3292 0. 36 0.7199 0.80
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III, DISCUSSION AND CONC LUSIONS

A general expression for predicting the rates of melting or freezing
and the resulting temperature histories was presented, based on the conduc-
tion shape factor equation derived in Refs. 13 or 15 and the assumptions
adopted by London and Seban7, concerning the phase change process,
Closed-form solutions were obtained for elliptic cylinder, oblate spheroidal,
prolate spheroidal coordinates, and bicylindrical coordinates. Arithmetic
results were presented in graphical form for the inward phase change prob-
lem in some of these coordinate systems. These results are of special
interest to the design of thermal storage equipment where container wall
temperatures and heat flow rates for various container shapes are important
as is the location of the solid-liquid interface. Elliptic cylinders and oblate
spheroids of medium to high eccentricities that resemble a slab-like geo-
metry were shown to give lower temperature differences and more uniform
heat flow rates than cylinders, spheres, and prolate spheroids, Low Biot
numbers resulted in more uniform heat extraction rates and low temperature
differences; however, longer times are required for complete phase change.
The error involved in neglecting the sensible heat effects was computed in
order to assess the limits of applicability of the results presented. The
maximum expected error was determined to be less than 10% for Stefan

numbers below 0.2 and 3% for Stefan numbers less than or equal to 0. 05,

The large number of other applications where the solution technique
can be used is of far greater significance than the few examples calculated
herein. For example, freezing around a disc-shaped cryoprobe can be esti-
mated by using the expressions presented in oblate spheroidal coordinates in
an outward direction. Freezing or melting around a finite plate immersed
in a semi-infinite medium can be estimated by the elliptic cylinder results
in an outward direction. Other cases such as melting or freezing around
buried cylinders or spheres can be treated by the use of bicylinder and bi-

spherical coordinate systems, respectively.

-43.

T —




10,

11,

12,

REFERENCES

Carslaw, H.S, and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed.,
Oxford University Press, London and New York, 1959,

Goodman, T.R., "The Heat-Balance Integral and Its Application to
Problems Involving a Change of Phase, " Transactions of ASME, Vol,
80, 1958, pp. 335-342,

Biot, M.A., and Daughaday, H., "Variational Analysis of Ablation, "
Journal of Aerospace Sciences, Vol. 29, No., 2, 1962, pp. 227-228.

Rosenthal, D., "The Theory of Moving Sources of Heat and Its Applica-
tion to Metal Treatments, " Transactions of ASME, Vol, 68, 1946,
pp. 849-866,

Megerlin, F., "Geometrisch eindimensionale Warmeleitung beim
Schmelzen und Erstarren, " Forsch. Ing. -Wes., Vol, 34, 1968,
pp. 40-46,

Lin, S., "An Analytical Method for Solving Geometric One-dimensional
Freezing or Melting Problems, " ASME Paper No. 73-WA/HT-33.

London, A, L., and Seban, R.A., "Rate of Ice Formation, " Transactions

of the ASME, Vol. 6, 1943, pp. 771-778.

Ehrlich, L.W,, "A Numerical Method of Solving a Heat Flow Problem
with Moving Boundary, " Journal of ACM, Vol. 5, 1958, pp. 161-176,

Murray, W.D., and Landis, F., "Numerical and Machine Solutions of
Transient Heat-Conduction Problems Involving Melting or Freezing, "
Transaction of ASME, Vol. 81, 1959, pp. 106-112,

Poots, G., "An Approximate Treatment of Heat Conduction Problem
Involving a Two-Dimensional Solidification Front, * International
Journal of Heat and Mass Transfer, Vol. 5, 1962, pp. 339-348,

Rathjen, K.A., and Jiji, L.M., "Heat Conduction with Melting or
Freezing in a Corner, " Journal of Heat Transfer, Trans. ASME,
Series C, Vol, 93, 1971, pp. 101-1009,

Shamsundar, N,, and Sparrow, E.M., "Analysis of Multidimensional
Conduction Phase Change Via the Enthalpy Model, " Journal of Heat
Transfer, Trans., ASME, Series C, Vol, 97, 1975, pp. 333-340,

-45.

R N S U P




|
ki
|
4
{
{

k3.

14,

15,

16.

17.

REFERENCES (Continued)

Yovanovich, M, M., Advanced Heat Conductwn Hemisphere Publishing
Corporation, Washington, D.C., 1978,

Moon, P., and Spencer, D.E., Field Theory for Engineers, D, Van
Nostrand Company, Inc., Princeton, New Jersey, 1961,

Yovanovich, M.M., "A General Expression for Predicting Conduction
Shape Factors," AIAA Paper No, 73-121, :

Shamsundar, N., and Sparrow, E.M,, "Storage of Thermal Energy by
Solid- Liquid Phase-Change--Temperature Drop and Heat Flux, "
Journal of Heat Transfer, Trans. ASME, Series C, Vol, 96,

pp. 541-543,

Thiyagarajan, R., and Yovanovich, M.M,, "Thermal Resistance of a
Buried Cylinder with Constant Flux Boundary Condition, " Journal of
Heat Transfer, Trans. ASME, Series C, Vol. 96, pp. 249-250.

-46- ;

ELE T AN AR At <1 T d g - ‘

FEME TR0 AP e . p-
= SIBTLO0T TN NP b ey



o o

Fo

=

2 e B o

Ste

SteFo

B e T

NOMENCLATURE

surface area of container

focal length of ellipse

Biot number, hc/k

semimajor axis

specific heat

semiminor axis and specific heat
frozen fraction

Fourier number, (k/PCx(Z))t
metric coefficient

convective heat transfer coefficient

thermal conductivity

latent heat of fusion

total heat transfer rate

heat transfer rate per unit area

thermal resistance

radius of circular cylinder or sphere
dimensionless radius for‘cylinder or sphere

time rate of change of solid-liquid interface radius
Stefan number, C(Tfr - TO)/L

Product of Stefan and Fourier numbers, k(Tfr “ To)t/er(Z)
temperature

time

il




ul’ uz’u3

X,Y,2

n,0,z
n,6,y

p
Z

e — g e

‘Subs cripts
i (o4
il j > k

fr

NOMENCLATURE (Continued)

orthogonal curvilinear coordinates
Cartesian coordinates

thermal diffusivity, k/PC

elliptic cylinder coordinates

oblate or prolate spheroidal coordinates
density

length

complete freezing or melting

corresponding to the coordinate i,j, or k

freezing (or melting) temperature

outer wall for inward problems

inner wall for outward problems
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